Prime Factorization Method
There are multiple ways to find the greatest common factor of given integers. One of these involves computing the prime factorizations of each integer, determining which factors they have in common, and multiplying these factors to find the GCD.
- Find the prime factorization of each number:
315 = 3, 3, 5, 7
184 = 2, 2, 2, 23
- Identify the common prime factors:
There are no common prime factors between 315 and 184.
- Since there are no common prime factors, the GCF is:
GCF(315, 184) = 1
Thus, the Greatest Common Factor of 315 and 184, using the prime factorization method, is 1.
This means 315 and 184 are relatively prime (coprime), having no common factors other than 1.
Listing All Common Factors Method
To find the Greatest Common Factor (GCF) of 315 and 184 by listing all common factors, follow these steps:
- List all factors of each number:
- Factors of 315: 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315
- Factors of 184: 1, 2, 4, 8, 23, 46, 92, 184
- Identify the common factors: The only common factor is 1.
- Determine the greatest common factor:
- The greatest common factor is the largest number in the list of common factors:
- GCF = 1
- The greatest common factor is the largest number in the list of common factors:
Since 315 is a prime number and does not share any common factors with 184 other than 1, the GCF of 315 and 184 is: 1
This means 315 and 184 are relatively prime (coprime), having no common factors other than 1.