What is 54/26 Divided By 1/5

Answer: 5426÷15\frac{54}{26}\div\frac{1}{5} = 13513\frac{135}{13}

Solving 5426÷15\frac{54}{26}\div\frac{1}{5}

  • Rewrite the Division as Multiplication by the Reciprocal:

5426÷15=5426×51\frac{54}{26} \div \frac{1}{5} = \frac{54}{26} \times \frac{5}{1}

  • Multiply the Numerators: 54×5=27054 \times 5 = 270
  • Multiply the Denominators: 26×1=2626 \times 1 = 26
  • Form the New Fraction: 5426×15=27026\frac{54}{26} \times \frac{1}{5} = \frac{270}{26}

Let's Simplify 27026\frac{270}{26}

  • Find the Greatest Common Divisor (GCD) of 270270 and 2626. The GCD of 270270 and 2626 is 22.
  • Divide both the numerator and the denominator by the GCD:270÷226÷2=13513\frac{270 \div 2}{26 \div 2} = \frac{135}{13}

Answer 5426÷15=13513\frac{54}{26}\div\frac{1}{5} = \frac{135}{13}


The following animation demonstrates the divide-by,

©AskMathGuru
Need support for a different topic or want to share a feedback? Write to us and we'll work on adding it. Be a part of our progress!