What is 33/99 Divided By 3/7

Answer: 3399÷37\frac{33}{99}\div\frac{3}{7} = 79\frac{7}{9}

Solving 3399÷37\frac{33}{99}\div\frac{3}{7}

  • Rewrite the Division as Multiplication by the Reciprocal:

3399÷37=3399×73\frac{33}{99} \div \frac{3}{7} = \frac{33}{99} \times \frac{7}{3}

  • Multiply the Numerators: 33×7=23133 \times 7 = 231
  • Multiply the Denominators: 99×3=29799 \times 3 = 297
  • Form the New Fraction: 3399×37=231297\frac{33}{99} \times \frac{3}{7} = \frac{231}{297}

Let's Simplify 231297\frac{231}{297}

  • Find the Greatest Common Divisor (GCD) of 231231 and 297297. The GCD of 231231 and 297297 is 3333.
  • Divide both the numerator and the denominator by the GCD:231÷33297÷33=79\frac{231 \div 33}{297 \div 33} = \frac{7}{9}

Answer 3399÷37=79\frac{33}{99}\div\frac{3}{7} = \frac{7}{9}


The following animation demonstrates the divide-by,

©AskMathGuru
Need support for a different topic or want to share a feedback? Write to us and we'll work on adding it. Be a part of our progress!