What is 33/99 Divided By 3/1

Answer: 3399÷31\frac{33}{99}\div\frac{3}{1} = 19\frac{1}{9}

Solving 3399÷31\frac{33}{99}\div\frac{3}{1}

  • Rewrite the Division as Multiplication by the Reciprocal:

3399÷31=3399×13\frac{33}{99} \div \frac{3}{1} = \frac{33}{99} \times \frac{1}{3}

  • Multiply the Numerators: 33×1=3333 \times 1 = 33
  • Multiply the Denominators: 99×3=29799 \times 3 = 297
  • Form the New Fraction: 3399×31=33297\frac{33}{99} \times \frac{3}{1} = \frac{33}{297}

Let's Simplify 33297\frac{33}{297}

  • Find the Greatest Common Divisor (GCD) of 3333 and 297297. The GCD of 3333 and 297297 is 3333.
  • Divide both the numerator and the denominator by the GCD:33÷33297÷33=19\frac{33 \div 33}{297 \div 33} = \frac{1}{9}

Answer 3399÷31=19\frac{33}{99}\div\frac{3}{1} = \frac{1}{9}


The following animation demonstrates the divide-by,

©AskMathGuru
Need support for a different topic or want to share a feedback? Write to us and we'll work on adding it. Be a part of our progress!