What is 33/99 Divided By 2/7

Answer: 3399÷27\frac{33}{99}\div\frac{2}{7} = 76\frac{7}{6}

Solving 3399÷27\frac{33}{99}\div\frac{2}{7}

  • Rewrite the Division as Multiplication by the Reciprocal:

3399÷27=3399×72\frac{33}{99} \div \frac{2}{7} = \frac{33}{99} \times \frac{7}{2}

  • Multiply the Numerators: 33×7=23133 \times 7 = 231
  • Multiply the Denominators: 99×2=19899 \times 2 = 198
  • Form the New Fraction: 3399×27=231198\frac{33}{99} \times \frac{2}{7} = \frac{231}{198}

Let's Simplify 231198\frac{231}{198}

  • Find the Greatest Common Divisor (GCD) of 231231 and 198198. The GCD of 231231 and 198198 is 3333.
  • Divide both the numerator and the denominator by the GCD:231÷33198÷33=76\frac{231 \div 33}{198 \div 33} = \frac{7}{6}

Answer 3399÷27=76\frac{33}{99}\div\frac{2}{7} = \frac{7}{6}


The following animation demonstrates the divide-by,

©AskMathGuru
Need support for a different topic or want to share a feedback? Write to us and we'll work on adding it. Be a part of our progress!