What is Cube Root of 512

Answer: The Cube Root of 512 is 8

  • Cube root of 512 is written as 5123\sqrt[3]{512} (Radical form).
  • 5123\sqrt[3]{512} = 8×8×83\sqrt[3]{8 \times 8 \times 8} = 8
  • In the exponential form, the cube root of 512 is expressed as (512)13(512)^\frac{1}{3}.

Prime Factorization Method

  • Step 1: Prime factors of 512: 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
  • Step 2: Prime factors of 512 in triplets: (2 x 2 x 2) x (2 x 2 x 2) x (2 x 2 x 2)
  • Step 3: Now cube root of 512:

5123=(2×2×2)×(2×2×2)×(2×2×2)3\sqrt[3]{512} = \sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)}

5123=23×23×233\sqrt[3]{512} = \sqrt[3]{ 2^3 \times2^3 \times2^3}

5123=(2×2×2)3\sqrt[3]{512} = \sqrt{(2\times2\times2)^3}

5123=83\sqrt[3]{512} = \sqrt{8^3}

5123=8\sqrt[3]{512} = 8

Therefore, the cube root of 512 is 8

Review Sub Calculations