What is Cube Root of 217

Answer: The Cube Root of 217 is 6.0092

  • Cube root of 217 is written as 2173\sqrt[3]{217} (Radical form).
  • 2173\sqrt[3]{217} = 6.0092×6.0092×6.00923\sqrt[3]{6.0092 \times 6.0092 \times 6.0092} = 6.0092
  • In the exponential form, the cube root of 217 is expressed as (217)13(217)^\frac{1}{3}.

Cube Root by Halley's Method

Halley's method is an iterative technique used to find cube roots. To find the cube root of a number using Halley's method, follow these steps:

Its formula is a3x((x3+2×a)(2×x3+a))\sqrt[3]{a} ≈ x \left( \frac{ \left( x^3 + 2 \times a \right) }{ \left( 2 \times x^3 + a \right) } \right) where,

• a = number whose cube root is being calculated = 217
• x = integer guess of its cube root.

Let's assume x as 6. Since 217 lies between 216 (cube of 6) and 343 (cube of 7). So, we will consider the closest cube number here, i.e. 6.

Using the above formula & numbers, let's calculate the cube root of 217

©AskMathGuru
Need support for a different topic or want to share a feedback? Write to us and we'll work on adding it. Be a part of our progress!